合盛平台网站

<font id="1zvhh"></font>

      <output id="1zvhh"></output>
      <form id="1zvhh"></form>

              <font id="1zvhh"><ins id="1zvhh"></ins></font>

                EN 中文版
                稀土百科RARE-EARTH ENCYCLOPEDIA
                當前您所在的位置:首頁 > 稀土百科 > 稀土知識
                稀土百科

                稀土磁性材料

                來源:百度文獻 時間:2018-10-24

                      磁性材料,通常所說的磁性材料是指強磁性物質,是古老而用途十分廣泛的功能材料,而物質的磁性早在3000年以前就被人們所認識和應用,例如中國古代用天然磁鐵作為指南針?,F代磁性材料已經廣泛的用在我們的生活之中,例如將永磁材料用作馬達,應用于變壓器中的鐵心材料,作為存儲器使用的磁光盤,計算機用磁記錄軟盤等。大比特資訊上說,磁性材料與信息化、自動化、機電一體化、國防、國民經濟的方方面面緊密相關。而通常認為,磁性材料是指由過渡元素鐵、鈷、鎳及其合金等能夠直接或間接產生磁性的物質。磁性材料按磁化后去磁的難易可分為軟磁性材料和硬磁性材料。磁化后容易去掉磁性的物質叫軟磁性材料,不容易去磁的物質叫硬磁性材料。一般來講軟磁性材料剩磁較小,硬磁性材料剩磁較大。

                一、基本特性

                1.磁性材料的磁化曲線

                磁性材料是由鐵磁性物質或亞鐵磁性物質組成的,在外加磁場H 作用下,必有相應的磁化強度M 或磁感應強度B,它們隨磁場強度H 的變化曲線稱為磁化曲線(M~H或B~H曲線)。磁化曲線一般來說是非線性的,具有2個特點:磁飽和現象及磁滯現象。即當磁場強度H足夠大時,磁化強度M達到一個確定的飽和值Ms,繼續增大H,Ms保持不變;以及當材料的M值達到飽和后,外磁場H降低為零時,M并不恢復為零,而是沿MsMr曲線變化。材料的工作狀態相當于M~H曲線或B~H曲線上的某一點,該點常稱為工作點。

                2.軟磁材料的常用磁性能參數

                飽和磁感應強度Bs:其大小取決于材料的成分,它所對應的物理狀態是材料內部的磁化矢量整齊排列。

                剩余磁感應強度Br:是磁滯回線上的特征參數,H回到0時的B值。

                矩形比:Br∕Bs

                矯頑力Hc:是表示材料磁化難易程度的量,取決于材料的成分及缺陷(雜質、應力等)。

                磁導率μ:是磁滯回線上任何點所對應的B與H的比值,與器件工作狀態密切相關。

                初始磁導率μi、最大磁導率μm、微分磁導率μd、振幅磁導率μa、有效磁導率μe、脈沖磁導率μp。

                居里溫度Tc:鐵磁物質的磁化強度隨溫度升高而下降,達到某一溫度時,自發磁化消失,轉變為順磁性,該臨界溫度為居里溫度。它確定了磁性器件工作的上限溫度。

                損耗P:磁滯損耗Ph及渦流損耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ 降低,降低磁滯損耗Ph的方法是降低矯頑力Hc;降低渦流損耗Pe 的方法是減薄磁性材料的厚度t 及提高材料電阻率ρ。在自由靜止空氣中磁芯的損耗與磁芯溫升關系為:總功率耗散(mW)/表面積(cm2)

                3.軟磁材料的磁性參數與器件的電氣參數之間的轉換

                在設計軟磁器件時,首先要根據電路的要求確定器件的電壓、電流特性。器件的電壓、電流特性與磁芯的幾何形狀及磁化狀態密切相關。設計者必須熟悉材料的磁化過程并掌握材料的磁性參數與器件電氣參數的轉換關系。設計軟磁器件通常包括三個步驟:正確選用磁性材料;合理確定磁芯的幾何形狀及尺寸;根據磁性參數要求,模擬磁芯的工作狀態得到相應的電氣參數。

                二、分類:

                磁性材料具有磁有序的強磁性物質,廣義還包括可應用其磁性和磁效應的弱磁性及反鐵磁性物質。磁性是物質的一種基本屬性。物質按照其內部結構及其在外磁場中的性狀可分為抗磁性、順磁性、鐵磁性、反鐵磁性和亞鐵磁性物質。鐵磁性和亞鐵磁性物質為強磁性物質,抗磁性和順磁性物質為弱磁性物質。磁性材料按性質分為金屬和非金屬兩類,前者主要有電工鋼、鎳基合金和稀土合金等,后者主要是鐵氧體材料。按使用又分為軟磁材料、永磁材料和功能磁性材料。功能磁性材料主要有磁致伸縮材料、磁記錄材料、磁電阻材料、磁泡材料、磁光材料,旋磁材料以及磁性薄膜材料等,反映磁性材料基本磁性能的有磁化曲線、磁滯回線和磁損耗等。

                1.永磁材料

                經外磁場磁化以后,即使在相當大的反向磁場作用下,仍能保持一部或大部原磁化方向的磁性。對這類材料的要求是剩余磁感應強度Br高,矯頑力BHC(即抗退磁能力)強,磁能積(BH)(即給空間提供的磁場能量)大。相對于軟磁材料而言,它亦稱為硬磁材料。永磁材料有合金、鐵氧體金屬間化合物三類。①合金類:包括鑄造、燒結和可加工合金。鑄造合金的主要品種有:AlNi(Co)、FeCr(Co)、FeCrMo、FeAlC、FeCo(V)(W);燒結合金有:Re-Co(Re代表稀土元素)、Re-Fe以及AlNi(Co)、FeCrCo等;可加工合金有:FeCrCo、PtCo、MnAlC、CuNiFe和AlMnAg等,后兩種中BHC較低者亦稱半永磁材料。②鐵氧體類:主要成分為MO·6Fe2O3,M代表Ba、Sr、Pb或SrCa、LaCa等復合組分。③金屬間化合物類:主要以MnBi為代表。

                永磁材料有多種用途。①基于電磁力作用原理的應用主要有:揚聲器、話筒、電表、按鍵、電機、繼電器、傳感器、開關等。②基于磁電作用原理的應用主要有:磁控管行波管微波電子管、顯像管、鈦泵、微波鐵氧體器件、磁阻器件、霍爾器件等。③基于磁力作用原理的應用主要有:磁軸承、選礦機、磁力分離器、磁性吸盤、磁密封、磁黑板、玩具、標牌、密碼鎖、復印機、控溫計等。其他方面的應用還有:磁療、磁化水、磁麻醉等。

                根據使用的需要,永磁材料可有不同的結構和形態。有些材料還有各向同性和各向異性之別。

                2.軟磁材料

                它的功能主要是導磁、電磁能量的轉換與傳輸。因此,對這類材料要求有較高的磁導率和感應強度,同時磁滯回線的面積或磁損耗要小。與永磁材料相反,其Br和BHC越小越好,但飽和磁感應強度Bs則越大越好。

                軟磁材料大體上可分為四類。①合金薄帶或薄片:FeNi(Mo)、FeSi、FeAl等。②非晶態合金薄帶:Fe基、Co基、FeNi基或FeNiCo基等配以適當的Si、B、P和其他摻雜元素,又稱磁性玻璃。③磁介質(鐵粉芯):FeNi(Mo)、FeSiAl、羰基鐵和鐵氧體等粉料,經電絕緣介質包覆和粘合后按要求壓制成形。④鐵氧體:包括尖晶石型──M O·Fe2O3 (M 代表NiZn、MnZn、MgZn、Li1/2Fe1/2Zn、CaZn等),磁鉛石型──Ba3Me2Fe24O41(Me代表Co、Ni、Mg、Zn、Cu及其復合組分)。 軟磁材料的應用甚廣,主要用于磁性天線、電感器、變壓器、磁頭、耳機、繼電器、振動子、電視偏轉軛、電纜、延遲線、傳感器、微波吸收材料、電磁鐵、加速器高頻加速腔、磁場探頭、磁性基片、磁場屏蔽、高頻淬火聚能、電磁吸盤、磁敏元件(如磁熱材料作開關)等。

                3.壓磁材料

                這類材料的特點是在外加磁場作用下會發生機械形變,故又稱磁致伸縮材料,它的功能是作磁聲或磁力能量的轉換。常用于超聲波發生器的振動頭、通信機的機械濾波器和電脈沖信號延遲線等,與微波技術結合則可制作微聲(或旋聲)器件。由于合金材料的機械強度高,抗振而不炸裂,故振動頭多用Ni系和NiCo系合金;在小信號下使用則多用Ni系和NiCo系鐵氧體。非晶態合金中新出現的有較強壓磁性的品種,適宜于制作延遲線。壓磁材料的生產和應用遠不及前面四種材料。

                磁性材料是生產、生活、國防科學技術中廣泛使用的材料。如制造電力技術中的各種電機、變壓器,電子技術中的各種磁性元件和微波電子管,通信技術中的濾波器和增感器,國防技術中的磁性水雷、電磁炮,各種家用電器等。此外,磁性材料在地礦探測、海洋探測以及信息、能源、生物、空間新技術中也獲得了廣泛的應用。 磁性材料的用途廣泛。主要是利用其各種磁特性和特殊效應制成元件或器件;用于存儲、傳輸和轉換電磁能量與信息,或在特定空間產生一定強度和分布的磁場;有時也以材料的自然形態而直接利用(如磁性液體)。磁性材料在電子技術領域和其他科學技術領域中都有重要的作用。

                三、發展及應用:

                1、軟磁材料的發展

                軟磁材料在工業中的應用始于19世紀末。隨著電力工及電訊技術的興起,開始使用低碳鋼制造電機和變壓器,在電話線路中的電感線圈的磁芯中使用了細小的鐵粉、氧化鐵、細鐵絲等。到20世紀初,研制出了硅鋼片代替低碳鋼,提高了變壓器的效率,降低了損耗。直至21世紀,硅鋼片在電力工業用軟磁材料中仍居首位。到20世紀20年代,無線電技術的興起,促進了高導磁材料的發展,出現了坡莫合金及坡莫合金磁粉芯等。從40年代到60年代,是科學技術飛速發展的時期,雷達、電視廣播、集成電路的發明等,對軟磁材料的要求也更高,生產出了軟磁合金薄帶及軟磁鐵氧體材料。進入70年代,隨著電訊、自動控制、計算機等行業的發展,研制出了磁頭用軟磁合金,除了傳統的晶態軟磁合金外,又興起了另一類材料--非晶態軟磁合金。 2、常用軟磁磁芯的種類

                鐵、鈷、鎳三種鐵磁性元素是構成磁性材料的基本組元。按(主要成分、磁性特點、結構特點)制品形態分類:

                (1) 粉芯類: 磁粉芯,包括:鐵粉芯、鐵硅鋁粉芯、高磁通量粉芯(High Flux)、坡莫合金粉芯(MPP)、鐵氧體磁芯

                (2) 帶繞鐵芯:硅鋼片、坡莫合金、非晶及納米晶合金

                2、含自由基磁性高分子

                一種形成有機自旋體系的方法是使有機自由基形成一定的有序結構,進而表現出鐵磁性??梢栽O計分子結構,通過氫鍵使自由基相互連接,得到磁有序狀態,第一個通過氫鍵組合自由基形成的有機鐵磁體是在1994年由Sugawara等合成的。之后,Veciana等也制備了幾種類似結構的苯基硝基硝氧基自由基的衍生物,其中一種間位結構的RSNN在0.45k有鐵磁性的相轉變。

                另一種方法是制備成高分子使有機自由基穩定并呈現鐵磁性有序。從合成有機聚合物鐵磁體來看,聚二乙炔衍生物要比聚乙炔衍生物更易使其中的自由基穩定和呈現鐵磁性。將含有有機自由基的單體聚合,通過高分子鏈的傳遞作用使自由基中的電子自旋發生耦合,從而表現出宏觀的磁性。如Ovchinnikov等在1987年制備的第一個有機磁性高分子BIPO,單體分子中具有兩個可進行聚合反應的三鍵,以及兩個帶有哌啶環的亞硝酰穩定的自由基。Ovchinnikov提出了超交換模型,從理論上分析了這種含自由基的高分子的磁性來源。

                 

                版權所有©內蒙古稀土功能材料創新中心有限責任公司 電話:0472-5886126
                工信部網站備案號: 蒙ICP備18004185號-1         蒙公網安備 15029002000286號

                 

                掃一掃,了解更多
                合盛平台网站
                友情链接:159彩票网注册 奔驰宝马app 白小姐一肖一码持码图 江苏快三